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SUMMARY 

The guided electromagnetic  waves  that  propagate  along a lossless  dielectric  rod  im- 
mersed  in  isotropic  and  uniaxial  plasmas are determined.  For  the  uniaxial  plasma, only 
the case  where  the  optic axis is alined  parallel  to the  dielectric  rod is considered. Both 
plasmas are described by the  linearized  momentum  transport  equation  for a cold,  colli- 
sionless,  electron  fluid of uniform  density.  Numerical  results  for  the  propagation con- 
stants of the  waves are presented as a function of the  rod  and  plasma  parameters  for both 
the  circularly  symmetric and  dipole  modes.  Important  aspects of the  results are dis- 
cussed with particular  emphasis on plasma  diagnostic  applications. 

INTRODUCTION 

During  the  past  several  years,  interest  in  the  measurement of plasma  properties  has 
been  increasing.  Specifically,  investigations  in  energy  conversion,  electromagnetic 
propulsion,  the  reentry  problem,  and  microwave  amplifiers  have  created  the  need  for 
accurately  determining  the  parameters of a plasma. 

Several new methods  for  measuring  electron  density are currently being  investi- 
gated. One promising new method consists of relating  the  plasma  parameters to the 
measurable  properties of electromagnetic  waves  guided by a dielectric rod  in  the  plasma. 
Recently, Robson and  Stewart (ref. 1) presented a theoretical  expression for the  electron 
density as a function of the phase shift of the dominant HEll mode  along a dielectric 
rod in a cold, collisionless, isotropic plasma.  Their  experimental  measurements of the 
electron  density  with  this  technique  were  approximately 30 percent  higher  than  those ob- 
tained with a double Langmuir probe. 



A more  extensive  investigation of wave propagation on a dielectric  rod  in a plasma 
was made by Medecki, et al. (refs. 2 and 3) for  electron  density  measurements on the 
ApoIIo reentry  flights.  Their  theoretical  investigation  considered a cold, isotropic 
plasma with collisions;  however,  numerical  results  were only presented  for  the TEOl 
mode in  the  collisionless case. Experimental  values  were  obtained by placing  conducting 
end  plates on a dielectric  rod  to make a cylindrical  probe  resonator  from which the elec- 
tron  density  was  obtained by observing  the  resonant  frequency  shift. Good agreement 
was  reported  between  theoretical  and  experimental  values. 

Kreuzer  and Miller (ref. 4) also  considered  electromagnetic wave propagation on a 
dielectric  rod  in a plasma.  Their  theoretical  and  experimental  investigation  emphasized 
the  HEll  mode. They  found that  the  phase shift of the  electromagnetic  waves  can be 
made a weak function of the electron  density if the  rod radius is large and a strong  func- 
tion if it is small. A probe  was  constructed  from a rod of large  radius by narrowing a 
short  section  to a small  radius. The  electromagnetic  waves were guided into  and out of 
the  plasma with virtually no phase shift due to  the  plasma on the  large  portion of the 
probe,  while  in  the  narrowed  region, a measurable  phase  shift due to the plasma  oc- 
curred  from which the  localized  electron  density  was  determined.  Their  experimental 
values  were  in good agreement with Langmuir  probe  data. 

The  previous  investigators (refs. 1 to 4) have  been  concerned  primarily with  the 
TEOl or  the  HEll  mode. In this report, a formal  analysis is presented  for  the  complete 
set of modes  that  propagate  along a dielectric  rod  in a plasma.  Several of the lowest 
order  circularly  symmetric  and dipole  modes are investigated  in detail to  determine  the 
modes  and  the  ranges of the  rod  and  plasma  parameters  that are most suitable for  diag- 
nostic  applications. 

Since a static  magnetic  field is present  in many plasmas,  the  analysis is conducted 
for both isotropic  and  uniaxial  plasmas  to assess the  effect of a magnetic  field. In prac- 
tice, a uniaxial  plasma  occurs  whenever  the  electron  cyclotron  frequency due to  the  static 
magnetic  field is much greater  than  the  source  and  plasma  frequencies. Only the  case 
where  the  static  magnetic field is alined  parallel  to  the  dielectric  rod is considered. 

MODEL 

The  model  (fig. 1) consists of an infinitely long, circular,  cylindrical  rod (of radius 
a and relative  dielectric  constant k) which is immersed  in a cold,  collisionless, homo- 
geneous  plasma. In practice,  the  plasma will be somewhat  inhomogeneous since the 
electron  density will be  depleted  near  the  surface of the  rod  because of the  formation of 
a plasma  sheath.  The  sheath  region, which can be approximated by a thin layer of free 
space,  can  easily be taken  into  account when k = 1. The  net  effect  in  this  case is 
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Figure 1. - Dielectric rod in plasma. 

simply  to  increase the rod  radius by the  sheath  thickness  since  the  rod  and  sheath  have 
the  same  value of dielectric  constant.  However,  the  effect of the sheath when k is other 
than 1 cannot be taken  into  account as readily. Thus, to simplify  the  analysis, the effect 
of the sheath will be omitted. 

GENERAL SOLUTION FOR FIELD 

Basic Equations 

The basic equations  to be used are Maxwell's equations  and the linearized momentum 
transport equation for a cold,  collisionless,  electron  fluid with an  applied  static  magnetic 
field. These  equations are 

v X E = -jwpoK 

V x ?; = qNov + jocoe 
- 

where 

e time-varying  electric  field 

static magnetic field 

h time-varying  magnetic  field 

- 
- 
HO - 
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me 

NO 

q charge of electron 

V electron  fluid  velocity  vector 

mass of electron 

equilibrium electron  density 

- 

€0 

P O  

w angular  source  frequency 

permittivity of free space 

permeability of free space 

It has  been  assumed  that  the  time  variation of all nonstationary  quantities is .jut7 
where w is sufficiently large that  the  ion  motion  can be neglected.  Equations (1) to (3) 
can be combined  to  yield 

If the  static  magnetic field is either weak so that wc << w and wc << w (isotropic 
plasma) or strong s o  that wc >> w and wc >> w (uniaxial  plasma),  the  relative  per- 
mittivity  tensor or dyad for  the  static  magnetic  field  in  the  z-direction is given by 

P 
P 

where  el = cP for  an  isotropic  plasma  and = 1 for a uniaxial plasma  and 

E P 
relative  dielectric  constant of isotropic  plasma, 1 - (WE/.") 

wc angular  electron  cyclotron  frequency, lqpoHo/mel 

w2 square of angular  plasma  frequency,  q 2 No/Eome 
P 

unit  vector  in ith direction 

Note  that  equations (4) and - (5) also apply  in  an - ordinary  dielectric  medium with a relative 
dielectric  constant k if  is replaced by kI, where i is the  unit dyad. 

- 

General  Solution of Basic Equations in Plasma 

The  solutions  sought  in  this  problem are electromagnetic  waves guided by the  rod 
which vary as e-jPz along  the  z-axis,  where P is the  propagation  constant.  These so- 
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lutions for  the electric and  magnetic  fields are derived by first finding  the  solutions for  
the  z-component of the  fields  from which  the  transverse  components are than  obtained. 

The  electric  and  magnetic  fields  can be expressed  in component form as 

where 

eZ 

hZ 

time-varying axial electric field 

et time-varying  transverse  electric  field 
- 

time-varying axial magnetic field 

% time-varying  transverse  magnetic  field 

Likewise,  the  operator V can be expressed as 

- 

v =  v t + -  a n  
az aZ 

where Vt is the  transverse  operator (in  cylindrical  coordinates Vt = gr(a/ar) 
+ (;&)(a/ag)). 

Substituting  equations (7) and (8) into  equations (4) and (5) and  equating  like  compo- 
nents  yield 

Now, solving  equation (12) for 4 and  substituting this result  into  equation (10) yield 
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where 

1 
C =  

(tol.10)1'2 

(speed of light  in a vacuum) 

The  transverse  electric field et can be expressed  in radial and  azimuthal  component 
form as 

and 

Next, substituting  equation (13) into (12) to  eliminate Gt yields 

The  transverse  magnetic field 
as 

- 
ht can be written  in radial and  azimuthal  component  form 

CY r ae 

and 
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The  differential  equation for hZ is obtained by substituting  equation (13) into (11) to 
eliminate et; this yields 

6: - a2)hz = 0 

where V: is the  transverse  Laplacian  (in  cylindrical  geometry Vt 2 = (a2/ar2) 
+ (l/r)(a/ar) + (l/r 2 2  ) (a  /a0 2 )). Likewise,  the  differential  equation for eZ is obtained by 
substituting  equation (17) into (9) which yields 

where 

The  general  solutions  for  equations (20) and (21) a r e  readily found to  be 

a3 

h Z = AnKn( a r )e  jn0,jwt 

M 

e z = BnKn(6r)e jnOejwt 

where 

n azimuthal wave number 

Kn(4 modified Bessel  function of nth order 

*n 

Bn 
Since  the  fields  must  vanish as r + “0, the branch of the  square root in equations (14) 

constant to be determined 

constant to be determined 
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and (22) that has a positive real part  must be chosen for the radial wave numbers Q, and 
6. Substituting  equations (23) and (24) into (15),  (IS), (18), and (19) yields  the  general 
solutions  for  the  transverse  components of e and E. 

General  Solution of Basic Equations in Dielectric 

As previously  indicated  in  the  section  Basic  Equations,  the fields in a dielectric  can 
be expressed by the  plasma  equations if the  relative dielectric tensor E is replaced by 
G. Thus,  equations (20) and (21) yield 

- 

6; i- = 0 

and 

a 0 = ( k k o - p  2 2 y  

The  general  solutions  to  equations (25) and (26) a r e  

m 

where 

J n M  Bessel  function of nth order 

'n 

Dn 

constant  to be determined 

constant  to be determined 
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Either  sign of the  square root in  equation (27) may be chosen. 

tuting  equations (28) and (29) into  equations (15), (16), (18), and (19) with a2 replaced 
by -ao, and  el  replaced by k. 

The  transverse components for the fields  in  the  dielectric  can be obtained  by  substi- 
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Dispersion  Equation 

The  boundary  conditions require eZ, hz, ee, and he to be  continuous at the  surface 
of the rod.  These  conditions  lead  to  the following dispersion  equation 

I Qo 

1 

+ 
a 
0 

+ E  E - 
1 

a 2 

J 

where  the  prime refers to differentiation with respect  to  the  total  argument. 
The  solutions for P are, in  general,  both real and  complex;  however,  only  the real 

values of P which satisfy  the  dispersion  equation will be  presented  since  this  analysis is 
only concerned with unattenuated  propagating  waves. It should also be noted that  equa- 
tion (30) is an  even  function of both P and n. Thus,  the  spectrum of waves  that  propa- 
gates  along  the  positive  z-axis is identical  to  that which propagates  along  the  negative 
z-axis;  likewise,  the  spectrum of left circularly  polarized waves is identical  to  that of 
the  right  circularly  polarized  waves.  Hence, it is not necessary  to  investigate  explicitly 
the  dispersion  equation  for  negative  values of P and n. 

NUMERICAL  RESULTS  AND  DISCUSSION 

The  results are presented  starting with the  simplest  limiting case of a dielectric  rod 
in free space. Next, the  results  for a dielectric  rod  in  an  isotropic  plasma are pre- 
sented,  and  finally  the  results for a dielectric  rod  in a uniaxial  plasma are considered. 

These  results are presented  in  the  form of curves for the  dimensionless  propagation 
constant Pa as a function of the  dimensionless  source  frequency  koa for various  dimen- 
sionless  plasma  frequencies w a/c. The  values of the dielectric constant  used are 1, 2, 
and 10. 

P 
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Except  in  the  circularly  symmetric case (n = 0), the  waves  that  correspond  to  the 
various  solutions  for Pa are hybrids;  that is, all three  components of the electric and 
magnetic  field are present.  These  hybrid  waves are denoted as either  electric  hybrid 
(HE) o r  magnetic  hybrid (EH). Each  hybrid wave can be considered  to  be  the sum of a 
transverse electric (TE)  and  transverse  magnetic (TM) wave,  with the  TE  component 
being  dominant in the EH wave and  the  TM  component  being  dominant  in  the HE.w&ve. 

HE wave, the  limiting case where w a/c is infinite is considered.  This  limit  reduces 
the  model  to  an  ordinary, dielectric filled,  circular, waveguide where all the  waves are 
TE  and TM. If a particular  hybrid wave reduces  to a TE  in this limit,  the  hybrid wave 
is denoted by EH; if it reduces  to a TM, it is denoted by HE. As previously  mentioned, 
the  circularly  symmetric  waves are not hybrids; all these  solutions  correspond  to TE 
and TM waves. 

In order  to  determine  whether a particular  solution  for Pa corresponds  to  an EH or  

P 

In addition,  each wave is further denoted by the  subscripts  n and  m which signify 
the  azimuthal  and radial orders of the wave, respectively.  Values  for  these  subscripts 
are selected so that  in  the  limiting case where w a/c is infinite they coincide with the 
subscripts of the  corresponding  circular waveguide modes. 

P 

Dielectr ic Rod i n  Free Space 

The  dispersion  equation  for a dielectric  rod  in free space  can be obtained from  equa- 
tion (30) with cl = eP = l. For the  circularly  symmetric  case (n = 0), the  dispersion 
equation  reduces  to 

and 

where 
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It can be shown that  solutions of equations (31) and (32) correspond  to TMom and  TEom 
modes,  respectively.  For  the  dipole case (n = l), equation (30) reduces  to 

The  solutions of equation (34) correspond to both EHlm and HElm modes. 

while to  consider  the  region  in  the (pa - koa)  plane  where  solutions  can  exist. For a di- 
electric  rod  in free space,  solutions  to  the  dispersion  equations are possible only if the 
Kn(ala)  function is real. This only occurs if the  argument ala is real; consequently, 
Pa is bounded from below by the  line Pa = koa.  Moreover, it can  be shown by consider- 
ing  the  sign of each  term  in  the  dispersion  equations  that Pa is bounded from  above by the 
- line Pa = k1l2k0a.  These bounds a re  shown in  figure 2 and are valid  for all values of n. 

Before  the  numerical  results  for  the  dispersion  equations are presented, it is worth- 

Dimensionless source frequency, $a 

Figure 2. - Region of solutions for dielectric rod in free space. 
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la1 Azimuthal wave number, 0; dielectric  constant. 2. 

," 
Ib)  Azimuthal wave number. 0; dielectric  constant. 10. 

0 I/, 1 2 3 4 5 b 7 0 . 5  1.0 L 5  I"L"J 2.0 2.5 3.0 3.5 

Dimensionless  source  frequency. koa 

(c)  Azimuthal wave number, 1: dielectric  constant 2. Id)  Azimuthal wave number, 1: dielectric  constant. 10. 

Figure 3. - Dielectric  rod in   f ree  space. 

There  are, of course, no solutions  to  the  dispersion  equations  for  a  dielectric  rod in 
free  space if k = 1. Numerical  results  for k = 2 and k = 10 are  presented in  figure 3. 
Note that  the TMol  and the  EHll  modes (as defined on  p.  10)  do not exist  for  the  dielec- 

tric  rod in free  space. 1 

~~ 

'In the  literature on surface waveguides (see,  e. g . ,  ref. 5) the  TMo2  mode as de- 
fined  in  this  report is often  called  the  TMol  mode,  the TM03 mode is often  called  the 
TMo2 mode, etc. 
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The results show  that all modes  except  the  HEll  have a low frequency  cutoff which 
occurs on  the  line Pa = koa. For  the  case  n = 0, it can be  shown that  the only values  for 
Pa and  koa on this  line which satisfy equations (31) and (32) are given by cY0a = 

- (Pa)21'/~ = a  om where aom is the m th  zero of J (a ) (aol = 2.405, oo2 
= 5.520 . . . ). Thus,  the  lower cutoff frequency  for  the  TEom  and TMo(m+l) modes is 

ck(kOa>2 

o om 

a 
koa = Om 

(k - 1) 1/2 

For the case  n = 1, the  lower cutoff frequency  obtained  from  equation (34) for  the 
EHl(m+l)  and HE l(m+l) modes is 

o 
k a =  lm 

(k - 1) 'I2 
0 

(3 5) 

where Dlm is the  m  zero of Jl(olm) (al0 = 0.0, oll = 3.832 . . . ). There  are no 
upper cutoff frequencies  for  modes on a dielectric  rod  in free space; as koa increases, 
the  value of Pa for  each mode asymptotically  approaches k1I2k0a. 

th 

Dielectric Rod in Isotropic Plasma 

The dispersion  equation  for a dielectric  rod  in an  isotropic  plasma is given by equa- 
tion (30) with = cP. For n = 0 it yields 

for TMom modes  and 

for  TEom  modes  where 
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For n = 1 it yields 

for EHlm and HElm modes.  The  region  in  the (Pa - koa) plane  where  solutions  to  the 
dispersion  equations exist for  an  isotropic  plasma is shown in  figure 4. It can be shown 
that if  koa < w a/c, all values of Pa are allowed. I€ k a > w a/c, Pa is bounded from 

above by the  line Pa = k1I2k0a and  from below by the  curve Pa = [(koa)2 - ( ~ ~ a / c ) ~ ]  . 
These bounds are valid for all values of n. 

P 0 P 
1/2 

upalc 
Dimensionless  source  frequency, k,,a 

Figure 4. - Region of solutions  for  dielectric rod in  plasma. 
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Numerical  results  for a dielectric  rod  in  an  isotropic  plasma are presented  in  fig- 
ure 5. It should be noted from  figures 5(d) to (i) that  the  presence of the  plasma  allows 
the TMol and  EHll  modes  to  propagate  in  contrast  to  the  free-space  case  where they are 
cut off. The  dispersion  curves for these  modes  approach  the  line  koa = 0 as w a/c be- 
comes  small. 

For low plasma  frequencies, both the TMO1 and  EHll  modes are backward  waves. 
This is particularly well illustrated  in  figures 5(d) to (f) for  the TMol mode  with 
w a/c = 1. A s  the  plasma  frequency  increases,  these  modes change from  backward  to 
forward  waves.  However,  this  transition  does not occur  at a discrete  plasma  frequency, 
but rather  over a narrow  range. If the  dispersion  curves  for  these  modes are examined 
on a greatly  magnified  scale  in  this  range, it is found that  they are double valued with  one 
value  corresponding  to a forward wave and  the  other  to a backward wave. For the TMO1 
mode,  this  narrow  range  can be approximated by a discrete  plasma  frequency which is 
given by 

P 

P 

This  equation was obtained from  equation (37) by equating  the  value of koa for infinite 
Pa to  the  value of koa for Pa = k1I2k0a. For the case shown in  figures 5(d) to (f) where 
k = 1, 2, and  10, these  plasma  frequencies  are w a/c = 2.4, 2. 1, and 1. 8, respectively. 
No suitable  criterion  exists which yields a simple  expression  for  approximating  this nar-  
row  range of plasma  frequencies  for  the  EHll  mode. 

P 

As  koa  approaches  the value 

w a  p 
k a =  C 
0 

(k + 1) 'I2 

the  value of Pa for the TMO1 and  EHll  modes  approaches  infinity.  This  value of koa 
corresponds  to a low-frequency cutoff for  backward  waves  and a high-frequency cutoff for 
forward  waves.  Conversely,  the  high-frequency cutoff for  backward  waves  and  the low- 
frequency cutoff for  forward  waves  cannot be expressed as simply  since  they  involve  the 
solutions of the  transcendental  dispersion  equations (37) and  (40). 

The  dispersion  curves  for  the  remaining  modes shown in figure 5  always  correspond 
to  forward  waves.  Except  in  the  special  case  where  k = 1, which is treated  separately, 
these  curves are similar  for low values of plasma  frequency  such as w a/c = 1.0 since 
they are merely  perturbations of the  free-space  case. For higher  plasma  frequencies 

P 
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Figure 5. - Dieieclrlc rod in  isotropic plasma. 
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such as w a/c = 10.0,  the  curves  approach  those  for a dielectric filled  circular wave- 
guide; for  w a/c = 00 the  curves are, of course,  identical  to  those  for a dielectric  filled 
circular waveguide. 

Each of these  modes  has a lower cutoff frequency but no upper cutoff frequency. As 
koa  becomes  large,  the  value of Pa for  each mode  asymptotically  approaches  k1l2k a 
as in  the  free-space case. This is physically  understandable  since  the  effect of the  plas- 
ma is negligible if koa >> w a/c. For all these  modes  except  the HEl1, the low- 
frequency cutoff first decreases with increasing w a/c until a critical  value  for w a/c 
is reached  and  then  continuously  increases with increasing w a/c. For values of w a/c 

P 
P 

0 

P 
P  P 

P  P 
the  low-frequency cutoff is given by below the  critical  plasma  frequency, 

koa = 

for  the TEom and  TMo(m+l) modes  and 

(43) 

for the EHl(m+l) and HEl(m+l) 
a t  koa = w a/c,  where w a/c is given by 

modes. At the  critical  plasma  frequency, cutoff occurs 

P  P 

for the  TEom and  TMo(m+l) modes and 
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for  the HE l(m+l) and EHl(m+l) modes.  For  values of w a/c above  the  critical  plasma 
frequency, the  low-frequency cutoff for  each mode is obtained by solving  the  appropriate 
transcendental  dispersion  equation with Pa = 0. For the  HEll  mode,  the  low-frequency 
cutoff is zero  for w a/c = 0 and  continuously increases with increasing  plasma fre- 
quency. 

other  than  the TMol and EHnl modes  unless  the  plasma  frequency  exceeds a critical 
value.  It can be shown that this value is given by equations (45) and (46) for  n = 0 and 1, 
respectively.  For  k = 1, all modes  other  than the TMO1 and  EHnl modes  have a lower 
but no upper cutoff frequency as in  the  case  for  general k. As koa  becomes  large,  the 
value of Pa asymptotically  approaches  the  value of koa.  The lower cutoff frequency  for 
each mode  continuously increases as w a/c increases, with the  minimum  value of the 
lower cutoff frequency  being  equal  to  the  critical  plasma  frequency. 

P 

P 

For the  special case where  k = 1, there are no solutions  to  the  dispersion  equation 

P 

Dielectric Rod in Uniaxial Plasma 

The  dispersion  equation  for a dielectric  rod  in a uniaxial plasma with the  optic axis 
(i.  e. , direction of strong  static  magnetic  field)  alined  parallel  to  the  rod is given by 
equation (30) with cl = 1. For n = 0 it yields 

= o  

for TMom modes  and 

for  TEom  modes  where 

and  for  n = 1 it yields 
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I -  I 

for EHlm and HE lr n modes. 
The  regions  in  the (Pa - koa)  plane  where  solutions  to  the  dispersion  equations  can 

exist for  the  uniaxial  plasma are shown in  figure 6. It can  be shown that if koa > w a/c, 
solutions for all modes (i. e. , all values of  n) exist in  the  region which is bounded from 
below by the  line Pa = koa  and from above by Pa = k1/2koa. These bounds are identical 
to  those for the  free-space  case. When koa < w a/c only the  circularly  symmetric 
modes  can exist. For the  TEom  modes,  the  upper  and  lower bounds  on Pa a r e  
Pa = k1/2koa and Pa = koa,  respectively. For the TMom modes,  the  upper  and  lower 

P 

P 

-Only TM,, modes 

Dimensionless  source  frequency, %a 

Figure 6. - Region of solutions  for  dielectric  rod in uniaxial plasma. 
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bounds are Pa = koa and Pa = 0, respectively. It should be  noted that if k = 1, only 
TMom modes  can exist and  then only for koa < w a/c. 

modes are identical  for  the uniaxial and  free-space cases. This  result  should be ex- 
pected  since  the  electrons  in a uniaxial plasma  can only  move parallel to the static  mag- 
netic  field which is in  the  z-direction,  and  the  TEom  modes, by definition,  have  no  com- 
ponent of electric field  in this direction.  Thus,  there is no interaction  between  the  plas- 
ma  and  the TEom  modes  for  the  uniaxial case. 

Numerical results for  the TMom modes are given in  figure 7. First, consider  these 
results  for k = 1. The TMO1 mode  for  the  uniaxial case exists for all values of w a/c. 
and  has both a lower  and  an  upper cutoff frequency as in  the  isotropic  plasma  case.  The 
lower cutoff frequency  can  be  obtained  from  equation (47) with Pa = 0; the  upper cutoff 
frequency  occurs  along  the  line Pa = koa at koa = w a/c.  The TMo(m+l) modes (m 2 1) 
exist only if w a/c 2 ulm. They  also  have both upper  and  lower cutoff frequencies.  The 
lower cutoff frequencies  for  the TMo(m+l) modes are given by equation (47) with Pa = 0, 
where  the  lowest  possible  value  for  the  (m + l)th mode is koa = u The  upper cutoff 
frequency  occurs at koa = w a/c,  where  the  value of Pa at the  upper cutoff frequency is 

P 
Comparing  equation (48) with (32) reveals  that  the  dispersion  equations  tor  the  TEom 

P 

P 
P 

lm’  
D 

Next, consider  the  case  where  the  dielectric  constant k is greater than 1; for  this 
case,  the TMom modes  exist  for all values of w a/c. Again, the TMO1 mode has both 
an  upper  and  lower cutoff frequency.  The  lower cutoff frequency is obtained as before by 
setting Pa = 0 in  equation (47). The  upper cutoff frequency  occurs  along  the  line 
Pa = koa at k a = w a/c if w a/c < uol/(k - 1) ‘I2, and at koa = ool/(k - 1) ‘I2 if 

wpa/c > ool/(k - 1)”’. The results  for the TMo(m+l) modes  (m 2 1) differ from  the 

TMol modes  since  they  have a lower but no upper cutoff frequency.  Discussion of the 
lower cutoff frequencies  can  be  divided  into  three  cases.  For w a/c < aom/(k - 1) 1/2 , 
the cutoff occurs on the  line Pa = koa at koa = uom/(k - 1) ‘I2. For  

cr /(k - l)l/’ < w a/c < ulm/k1/2, the cutoff occurs on the  line Pa = koa at 

k a = w a/c.  Finally,  for w a/c > olm/k1/2, the cutoff can  be  obtained  from  equa- 
tion  (47pby  setting Pa = 0. 

P 

0 P  P 

P 

om  P 

0 P 

The  dispersion  curves  for  the TMo(m+l) modes  (m 2 1) are interesting  since  they 

have  discontinuities o r  gaps in both Pa and  koa. For olm/k1/2 < wpa/c 

< ‘o(m+1) 
range,  the  upper  and  lower  values of Pa at the  gap are the  maximum  and  minimum 

/(k - 1) 1/2, a gap  in Pa occurs at koa = w a/c. For  a given w a/c in this P  P 

values of [k(wpa/c)2 - f ~ ~ ~ ) q ~ ’ ~  and w a/c,  respectively. Note that  the  gap  vanishes 
P 
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for w a/c = u /(k - 1) 'I2. For w a/c > uo(m+l) /(k - 1)1/2, the gap  occurs both in 

Pa and koa. The  lower  coordinates of the  gap are Pa = r ~ ~ ( ~ + ~ ) / ( k  - 1)ll2  and 
P  P 

koa = ul(m+l)/(k - 1) 1/2; the  upper  coordinates are Pa = 
and koa = wDa/c. 

Numeriial  results  were also computed for  the dipole  modes  in  the  uniaxial  plasma. 
In  the  region of the (Pa - koa) plane  where these solutions exist, the  dipole  solutions are 
practically  indistinguishable  from  the  corresponding  dipole  solutions  for  the  free-space 
case. This is understandable  since  solutions for the case n = 1 cannot exist if 
koa < w a/c (see fig. 6 )  where  the  strongest  interaction  between  electromagnetic  waves 
and  the  plasma  normally  occurs. If koa > w a/c,  the  strong  static  magnetic  field  com- 
pletely  eliminates  the  interaction of the  plasma with the  transverse electric field.  Thus, 
only the axial component of the  electric  field  can  interact with the  plasma.  This  inter- 
action is apparently  small  since  the  solutions are almost  identical  to  those  for  the free- 
space  case. 

P 
P 

APPLICATION OF RESULTS 

Dielectric  rods  in  plasmas  have  been  used  to  determine  electron  density  in two basic 
ways.  The first consists of terminating a short  section of rod of length  L with conduct- 
ing  end  plates  to  form a resonator  (refs. 2 and 3). This  structure will resonate when 
the  value of koa is such  that  the  corresponding  value of Pa is an  integral  multiple of 
sa/L.  These  values of koa are indicative of the  electron  density. 

the rate of change of the  resonant  frequency with respect  to  the  plasma  frequency at a 
fixed  propagation  constant o r  

To  facilitate the  discussion of this method, it is useful to define a sensitivity Sr as 

In  order  for  the  resonator method to  be  useful,  the  sensitivity  must  exceed a minimum 
value. For  example,  assume that a change in  resonant  frequency of 0 .1  percent  can be 
resolved.  Then, if a change in  electron  density of 5 percent is to be detected,  the  sensi- 
tivity Sr must  exceed 4X10-2(w/w 

The  second  method of determining  the  electron  density  consists of a direct  measure- 
ment of the phase  shift PL between  points  spaced a distance L along a dielectric  rod  in 

p). 
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a plasma (refs. 1 and 4). This  measurement is normally  conducted at a fixed  source  fre- 
quency  koa.  The  sensitivity of this method S is defined as the rate of change of the 
phase  shift with respect to the  plasma  frequency at a fixed source frequency or 

v 
I 

To  determine  an  approximate  lower  limit on the  sensitivity S consider  an  example 
where  the  minimum  phase shift that  can be resolved is 0.1  radian and  where it is desir- 
able to  detect a 5 percent change in  electron  density.  This will require S to  exceed 

cp' 

cp 
4/wp. 

The  dynamic  range  for  either of these  methods is the range of w a/c  over which the 
P 

sensitivity is sufficiently high to  give  the  desired  resolution  in  the  electron  density. 
The  spatial  resolution of the  electron  density  measurement  depends on the  dimensions 

of the  rod  and  the  penetration of the electromagnetic  field  into  the  plasma.  The spatial 
resolution  in  the axial direction is equal, of course,  to  the length L. The  spatial  resolu- 
tion  in  the  radial  direction  depends on the  radius of the  rod a and  the  dimensionless ra- 
dial wave numbers cya and ba. It can  be shown from  the  asymptotic  forms for the  mod- 
ified Bessel  functions  in  equations (29) and (30) that if aa ? 1 and 6a 2 1, the  total ra- 
dial extent of the axial electric field is of the  order of a[l + (l/Sa)]  and  the  total radial 
extent o€ the axial magnetic  field is of the  order of a[l + (l/cya)]. If cya << 1 and 
6a << 1, the radial extents of the axial electric  and  magnetic  fields  are  generally  quite 
large with respect  to  the  radius of the  rod.  Thus,  to  obtain good spatial  resolution it is 
necessary  to  select  solutions  where cya and  6a are at least 1 and a and L are  small .  

The  basic  objective when applying  the  results,  therefore, is to  select  the mode of 
propagation,  values  for  the  radius  and  dielectric  constant of the  rod, and values  for 
either Pa or koa,  that  maximize  the  sensitivity  and  yet  maintain  the desired spatial 
resolution  and  dynamic  range. 

First, consider  the  results  for  the  isotropic  plasma  presented  in  figure 5. The 
TMO1 and  EHll  modes  appear  to be very  suitable for use  in  the  resonator  technique be- 
cause they  yield a high sensitivity  and a large  dynamic  range.  Moreover,  their  sensi- 
tivities are nearly  independent of the  rod  radius  and  plasma  frequency if the  value  chosen 
for Pa is larger than  the  value of the largest  dimensionless  plasma  frequency of inter- 
est. For large  values of Pa, the  sensitivity is the  same  for both  the TMO1 and  EHll 

modes  and  can  easily be  computed  using  equation (51) giving Sr = l/(k + 1)lI2. This 
value is 25 times  greater than  the  minimum  value required  for  the  example on page 23. 
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Since Pa is of the  order of ?ra/L, both a and  L  can be small and still give  the re- 
quired  value  for Pa. Thus, good spatial  resolution  can be obtained  with  these  modes 
since  the  values of aa and 6a,  which are of the  order of Pa in this case, are large  and 
a and  L  can be made small. 

The HEll mode also  appears  to be useful  in  the  resonator  technique.  For  this mode, 
small  values of Pa and o a/c give  the largest sensitivity;  however,  the  electromag- 
netic  field  may  have a large radial extent  since aa and 6a can be small if  Pa and 
w a/c are small.  For  larger  values of Pa, the  sensitivity is generally  very low unless 
w a/c is between 1 and 10. To  obtain  values  in  this  range  requires a prohibitively  large 
rod  radius  for low plasma  frequencies.  For  example, if the  electron  density No is 
10 per  cubic  meter,  the  rod  radius  must  be of the  order of 1.7X10-1 to 1 .7  meters; 
however if No is lo1’ per  cubic  meter,  the  rod  radius  must only be of the  order of 
1. 7X10-3 to  1.m10-2  meters. 

P 

P 
P 
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For the  remaining  modes,  the  value of Pa in  most  applications  must be made  larger 
than  the value of Pa at the  low-frequency cutoff for  the free-space  case to ensure  that 
resonance will occur  for all values of w a/c. Such a value  for Pa will generally  yield 
good spatial  resolution but a low sensitivity  unless w a/c  can be  made large. Again, 
this may result  in a prohibitively  large  rod  radius.  Thus,  the TMO1 and EHll modes  ap- 
pear to  be the  most  suitable  for use in  the  resonator  technique - especially  for  the  meas- 
urement of low plasma  frequencies with good spacial  resolution. 

P 
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All  modes  except  the TMO1 and EHll modes  appear  to  be  useful  in  the  phase shift 
method.  However,  the source  frequency  for a particular mode must be selected suffi- 
ciently high so that  the mode will propagate  over  the  range of w a/c of interest. Maxi- 
mum sensitivity  generally  occurs  for  values of w a/c  in  the  range  from 1 to 10. To 
achieve  values  in  this  range will require a large  rod  radius and  hence  give poor radial 
spatial  resolution if  the  plasma  frequency is low. If w a/c is restricted  to be small, 
the  sensitivity  in  the  phase  shift method can still be  made arbitrarily  large by increasing 
the  length  L (see eq. (52)). This  can be done,  however, only at the  expense of de- 
creased  axial  spatial  resolution.  Thus,  the  phase shift method is generally not useful  for 
measuring low electron  densities with good spatial  resolution. 

P 
P 
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For the  uniaxial  case, only  the TMom modes are useful; these  modes are shown in 
figure 7. The TMO1 mode appears  to be usable  in  the  resonance  technique if the  value 
chosen  for Pa is less than  the value of w a/c for  the  lowest  plasma  frequency of inter- P 
est. In this region,  the  sensitivity is high, particularly  for low plasma  frequencies. 
Moreover, the sensitivity is nearly  independent of the  rod  radius as in  the  isotropic case. 

The TMO2 mode is usable  in  the  resonator  technique only for  special cases since  the 
dispersion  curves are not a continuous  function of w a/c. The  usefulness of the TMO2 
mode is further  restricted  since  the  sensitivity is low unless  the  value of w a/c is large 
which  may require a large  rod radius if the  plasma  frequency is low. Thus,  the TMol 

P 
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mode appears  to be the  most  suitable  for use in  the  resonator  technique  for  the  uniaxial 
case. 

The uniaxial TMOl and TMO2 modes  appear  to be very  restricted  in  their  usefulness 
in  the  phase  shift  method.  The TMO1 mode gives a high sensitivity  and  generally  adequate 
spatial  resolution  but only over a very  small  dynamic  range. It may  be  possible  to  extend 
the  dynamic  range,  however, by operating at several  different  source  frequencies.  The 
TMO2 mode gives a large  dynamic  range  and  adequate radial spatial  resolution  for low 
values of w a/c;  however,  the  sensitivity is very low unless  the axial spatial  resolution 
is sacrificed by making  L  large.  For  large  values of w a/c, the  sensitivity is gener- 
ally adequate, but the  dynamic  range is limited  and  the  spatial  resolution may be poor 
especially if the  plasma  frequency is low. Thus,  the TMol also  appears to be the  most 
suitable  for use in  the  phase  shift  method  for  the  uniaxial  case. 

The parameter  that  has not yet been explicitly  considered is k,  the  relative  dielec- 
t r ic  constant of the  rod. A study of the  results  in  figures 5 and 7 reveals  that  varying  k 
produces two main  effects. First, as k increases, the  maximum  sensitivity  decreases 
for  either  technique  discussed.  This  decrease is generally  accompanied,  however, by an 
increase  in  the  dynamic  range.  Thus,  the  selection of the dielectric  constant  can be used 
advantageously  to  trade off sensitivity  for  dynamic  range or the  converse.  The  second 
main  effect due to  varying k is that  either  the  source  or  resonant  frequencies can be 
scaled with the  scaling  factor  being  approximately  l/k1j2.  This  effect  can be used  in 
some cases to  bring  the  frequency of interest within  the  range of available  instrumenta- 
tion.  Furthermore, by properly  choosing  'k it may  be  possible  to  bring the radial extent 
of the field within acceptable  limits. 
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In  addition to  the  selection of the  rod and plasma  parameters,  several  other  factors 
must be considered  before  using  electromagnetic wave propagation on a dielectric  rod as 
a plasma  diagnostic tool. One of these is mode identification. A general  source  for 
electromagnetic  waves will excite not  only the  circularly  symmetric and  dipole  modes, 
but also  the  quadrupole  (n = 2) and  higher  modes.  Thus, it is necessary  to select a 
source  configuration  that will preferentially  excite  the mode or  modes of interest so that 
they  can be easily  identified.  This is particularly  important when either  the TMO1 or 
EHll mode is used in  an  isotropic  plasma  since  these  modes  along with the EHn (n = 2, 
3, etc. , ) modes  have  their  respective  dispersion  curves  in  the  same  region of the 
(Pa - koa)  plane. 

ma  near  the  surface of the  rod. As noted in the section MODEL, its  effect  for  k = 1 is 
simply  to  increase the  effective  rod  radius by approximately  the  thickness of this  sheath. 
Since  the  sheath  thickness is often unknown, i t  may be advantageous  to  operate  where 
the  relation  between  the wave and plasma  parameters is not a strong function of the 

Another factor  to be considered is the  effect of the  inhomogeneous  region  in  the  plas- 
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rod  radius. This is best illustrated by the  resonator  method with either  the TMO1 o r  
EHll  mode. 

CONCLUDING REMARKS 

The guided electromagnetic  waves  that  propagate  along a lossless dielectric  rod  im- 
mersed  in both an  isotropic  and uniaxial plasma were,  determined.  Numerical  solutions 
were  presented for the  propagation  constants as a function of the  parameters of the  model 
for  both the circularly  symmetric  and  dipole  modes. 

For the  isotropic  plasma,  the TMO1 and  EHll  modes  were  generally  the  most suit- 
able for use  in  the  resonator method.  They  had good sensitivity,  even for low electron 
densities,  and a large  dynamic  range.  For  the  phase  shift method, all modes  except  the 
TMO1 and  EHll  were  acceptable;  however,  the  values  for  the  dimensionless  plasma fre- 
quencies  generally  had  to  be  in  the  range  from 1 to 10 to give  maximum  sensitivity, which 
could result  in  poor  spatial  resolution if the  plasma  frequency is low. 

For  the uniaxial  case, only the TMom modes  proved  to  be  usable.  The TMOl mode 
appeared  to  be  the  most  suitable  for use in  the  resonance  technique if  the  value  chosen  for 
the  propagation  constant  was less than  the  lowest  value. of interest  for  the  dimensionless 
plasma  frequency.  The TMO2 mode was only usable  for  special  applications  because of 
discontinuities  in  the  dispersion  curves. Both the TMOl and TMO2 modes  were  limited  in 
their  usefulness  in  the  phase shift method.  The TMO1 mode  had a limited  dynamic  range 
which could,  however, be expanded by operating at several  different  source  frequencies. 
The TMO2 mode  generally had either  inadequate  sensitivity  or poor spatial  resolution un- 
less the  electron  density was high. 

Lewis Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, July 16, 1968, 
125-24-03-05-22. 
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APPENDIX - SYMBOLS 

see eqs. (23) and (24) 

see eqs. (28) and (29) 

radius of dielectric  rod  (see 
fig. 1) 

unit  vector  in ith direction 

speed of light  in  vacuum 

time-varying radial electric 
field 

time-varying axial electric 
field 

time-varying  azimuthal  elec- 
tric field 

time-varying  electric  field 

time-varying  transverse elec- 
tric field 

static  magnetic  field 

time-varying radial magnetic  field 

time-varying axial magnetic 
fie Id 

time-varying  azimuthal  mag- 
netic  field 

time-varying  magnetic  field 

time-varying  transverse  mag- 
netic  field 

unit  dyad 

Bessel function of nth order 

modified Bessel function of 
nth order 

relative  permittivity  tensor of 
plasma  (see eq. (6)) 

relative  dielectric  constant  rod 

kO 

L 

m e 

NO 

q 

r 

sr 

t 
- 
V 

z 

a! 

(Y 
0 

cra 1 

cra 2 

P 

6 

61 

o/c (free-space wave number) 

length of dielectric rod  used as 
probe (for resonance  tech- 
nique, L is distance  between 
conducting  end  plates; for 
phase shift method, L is dis- 
tance  over which phase  shift is 
measured) 

mass of electron 

equilibrium  electron  density 

charge of electron 

radial  coordinate (see fig. 1) 

sensitivity of resonator method 
(see eq. (51)) 

sensitivity of phase  shift  method 
(see eq. (52)) 

time 

electron fluid velocity  vector  in 
plasma 

axial coordinate (see fig. 1) 

propagation  constant  in 
direction 

Z- 



€0 
permittivity of free space 

relative dielectric constant of E 
P 

isotropic  plasma 

el see eq. (6) 

PO 

e coordinate  in  azimuthal  direc- 

permeability of free space 

tion (see fig. 1) 

uom mth zero of J ~ ( X )  

ulm 
ir, 

% 

w 
P 

mth zero of J1(x) 

angular  source  frequency 

angular  electron  cyclotron fre- 
quency 

angular  plasma  frequency 

Subscripts: 

m  order of mode in radial direction 

n  azimuthal wave number 
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